Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

نویسندگان

  • Yangming Ou
  • Jimit Doshi
  • Guray Erus
  • Christos Davatzikos
چکیده

As an entry to the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, this paper presents a multi-atlas-based automatic pipeline for segmenting the right ventricle in MR images. Multiatlas segmentation relies on two major components: image registration to propagate segmentation labels into target image that needs to be segmented, and label fusion to effectively combine those labels from multiple atlases into final segmentation. In the challenge dataset, we observe different imaging fields-of-view (FOVs), different structures around cardiac structures, and as such, registration and label fusion become quite difficult. We propose to drive both components by an attribute-based similarity metric and a mutual-saliency-based reliability metric. The fundamental idea is to improve registration and label fusion by looking for corresponding voxels that are similar (as measured by their Gabor attributes in the neighborhood), and more importantly, reliably similar (as measured by the mutual-saliency of their matching) between atlas and target images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration

We propose a novel method for fully automated segmentation and tracking of the myocardium and left and right ventricles (LV and RV) using 4D MR images. The method uses non-rigid registration to elastically deform a cardiac atlas built automatically from 14 normal subjects. The registration yields robust performance and is particularly suitable for processing a sequence of 3D images in a cardiac...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Multi-atlas segmentation with augmented features for cardiac MR images

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...

متن کامل

Neural Multi-Atlas Label Fusion: Application to Cardiac MR Images

Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. T...

متن کامل

Multi-Atlas Based Segmentation with Local Label Fusion for Right Ventricle MR Images

Evaluation of right ventricular (RV) function is essential for the diagnosis of cardiovascular diseases. However, to date, it heavily relies on manual segmentation which is time-consuming and dependent on the observer’s experience. This paper presents a multi-atlas based segmentation method which labels the RV myocardium and blood pool by ensembling opinions from multiple atlases. It only requi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012